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Trend detection of atmospheric time series:
Incorporating appropriate uncertainty estimates
and handling extreme events

Kai-Lan Chang1,2,*, Martin G. Schultz3, Xin Lan1,4, Audra McClure-Begley1,4,
Irina Petropavlovskikh1,4, Xiaobin Xu5, and Jerald R. Ziemke6,7

This paper is aimed at atmospheric scientists without formal training in statistical theory. Its goal is to (1)
provide a critical review of the rationale for trend analysis of the time series typically encountered in the
field of atmospheric chemistry, (2) describe a range of trend-detection methods, and (3) demonstrate
effective means of conveying the results to a general audience. Trend detections in atmospheric chemical
composition data are often challenged by a variety of sources of uncertainty, which often behave differently
to other environmental phenomena such as temperature, precipitation rate, or stream flow, and may require
specific methods depending on the science questions to be addressed. Some sources of uncertainty can be
explicitly included in the model specification, such as autocorrelation and seasonality, but some inherent
uncertainties are difficult to quantify, such as data heterogeneity and measurement uncertainty due to
the combined effect of short and long term natural variability, instrumental stability, and aggregation of
data from sparse sampling frequency. Failure to account for these uncertainties might result in an
inappropriate inference of the trends and their estimation errors. On the other hand, the variation in
extreme events might be interesting for different scientific questions, for example, the frequency of
extremely high surface ozone events and their relevance to human health. In this study we aim to (1)
review trend detection methods for addressing different levels of data complexity in different chemical
species, (2) demonstrate that the incorporation of scientifically interpretable covariates can outperform
pure numerical curve fitting techniques in terms of uncertainty reduction and improved predictability, (3)
illustrate the study of trends based on extreme quantiles that can provide insight beyond standard mean or
median based trend estimates, and (4) present an advanced method of quantifying regional trends based on
the inter-site correlations of multisite data. All demonstrations are based on time series of observed trace
gases relevant to atmospheric chemistry, but the methods can be applied to other environmental data sets.
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1. Introduction
Chandler and Scott (2011) defined a trend as the “long-
term temporal variation in the statistical properties of a
process, where ‘long-term’ depends on the application”

(p. 5). Attempts to detect possible trends might be made
before a time series is of sufficient length for accurate
trend detection because in many circumstances the nec-
essary length of the time series is not known beforehand.
Under these circumstances, the trend detection might be
less reliable when dealing with the large complexities of
atmospheric chemical composition measurements, for
example, the combined effect of spatial and temporal
variability, instrument detection levels, and/or the influ-
ence of extreme events. Therefore, the statistical models
that ignore the underlying complexities produce under-
represented estimation errors and biased trend estimates,
providing either an overinterpretation of noisy data or
inconsistent results for scientific assessment (Tong,
2019). These circumstances can be avoided if the atmo-
spheric chemistry research community is familiar with
a range of acceptable statistical approaches and their cor-
rect application.

1 Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA

2 NOAA Chemical Sciences Laboratory, Boulder, CO, USA
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Sound scientific assessment relies on good statistical
practices. Whereas various trend detection techniques
often arrive at similar answers with respect to estimated
slopes or offsets, the uncertainties estimated by these dif-
ferent techniques vary widely. Because scientists assess the
robustness of a trend through the associated uncertainty
estimate, it is critical that an appropriate trend detection
technique is applied.

An appropriate reported uncertainty is as important as
the trend estimate, and a trend value without a properly
derived uncertainty estimate provides no useful informa-
tion for scientific assessment. Even though widely applied
regression-based approaches always report the standard
error (i.e., uncertainty) associated with each regression
coefficient (e.g., trend value), the uncertainties can be
unrealistically narrow if the model is applied incorrectly.
The statistical model can be inappropriate if (1) the model
assumptions are violated and/or (2) the model specifica-
tions are not adequate. If the model assumptions are not
met, the result might be unreliable; if the model specifica-
tions are either mis-fitted, underfitted (oversimplifying
the reality), or overfitted (using too many predictors to
describe unimportant variation), the result is not
representative.

Atmospheric scientists interested in understanding
methods of time series analysis and trend detection can
turn to a wide range of text books and review articles for

guidance (Brockwell and Davis, 1987; Hamilton, 1994;
Chatfield, 2000; Lütkepohl, 2005; Durbin and Koopman,
2012; Box et al., 2015; Shumway and Stoffer, 2017), with
some sources focusing on environmental time series
(Chandler and Scott, 2011), meteorology (Wilks, 2011),
or climate change (Von Storch and Zwiers, 2001). How-
ever, none of these references focus on atmospheric chem-
istry, which may leave atmospheric chemists unaware of
the most appropriate statistical methods for analyzing
time series of trace gases. This paper is aimed at atmo-
spheric chemists to show how trend analysis can be
improved if appropriate techniques are applied and to
encourage the uptake of statistical thinking (i.e., not rely-
ing on a single approach).

Figure 1 shows the monthly mean time series of sev-
eral trace gases measured at surface level from Mauna Loa
Observatory, Hawaii (19.5�N and 155.6�W; 3,397 m above
sea level; Oltmans and Komhyr, 1986; Thoning et al., 1989;
Dlugokencky et al., 2020). This example demonstrates that
the data characteristics and variability can vary widely
among different chemical species, so a single set of trend
techniques would have difficulty addressing the range of
factors that contribute to uncertainty. The data character-
istics of these time series can be summarized as follows:
(1) Seasonality: methane (CH4) and carbon dioxide (CO2)
have a regular seasonal cycle with a relatively lower vari-
ability from year to year, carbon monoxide (CO) and ozone
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Figure 1. Monthly mean time series for different chemical species. Trace gases are measured at Mauna Loa
Observatory (MLO), Hawaii. DOI: https://doi.org/10.1525/elementa.2021.00035.f1
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(O3) have an erratic seasonal cycle with a higher variability,
and nitrous oxide (N2O) and sulfur-hexafluoride (SF6) have
no seasonal cycles because they do not interact with the
biosphere and lack efficient sink mechanisms in the tro-
posphere; (2)Magnitude of data variability: Strong increas-
ing tendencies are obvious for methane, CO2, N2O, and
SF6 even without a quantification of the trends, while
trend detection for CO and ozone is challenging due to
erratic seasonal variations and apparently weak changes
over time; (3) Nonlinearity: Even though both methane
and CO2 show increasing trends, methane has a leveling-
off in the early 2000s, which is not seen in CO2; (4) Auto-
correlation: the steady variation of CO2 indicates that ob-
servations in the past are correlated with current
observations, even if data are separated by several years
(long memory; Barassi et al., 2011), while a much shorter
correlation range is found for ozone at the same location
(short memory; see later analysis); (5) Extreme events: An
interesting aspect of CO and ozone is that the extreme
events have changed over time; the high extremes seem to
show a stronger decrease than the low extremes for CO,
but the change of the extreme events for ozone is rather
uncertain. Therefore, trend detection of the extreme quan-
tiles should also be explored with appropriate techniques.

This paper is outlined as follows: Section 2 reviews the
challenges in trend detection of atmospheric time series.
Section 3 describes the framework of trend detection tech-
niques. Several demonstrations of these methods are pre-
sented in Sections 4–6. Section 4 examines the data
characteristics and autocorrelation associated with differ-
ent chemical species measured at MLO (although we focus
on trace gases, the methodology applies to aerosols too).
Changing data variability might diminish our ability to
detect trends, and the uncertainty associated with each
observation or aggregated data point is often unavailable
or not representative. Section 5 applies the quantile
regression method to study the changes in different por-
tions of the data distribution, and in particular extreme
events, which provides additional insight to the com-
monly calculated mean or median trends. Section 6 de-
monstrates a method for deriving regional mean and
extreme quantile trends from an extensive ozone moni-
toring network in the southwest United States. This
advanced statistical technique, when applied to a large
ensemble of time series data, not only provides more con-
crete evidence of the trends, but it also gives more robust
and consistent results regarding quantile changes. Section
7 discusses additional advanced trend detection techni-
ques relevant to this study. The paper concludes in Section
8 with discussions on the effectiveness of various trend
detection techniques.

2. Review of challenges in trend detections
of atmospheric time series
Various complexities are associated with the trend detec-
tion of atmospheric time series. The fundamental statisti-
cal principles of trend detection place the emphasis on the
magnitude of the trend and its associated error, sample
size, and autocorrelation (Tiao et al., 1990; Weatherhead et
al., 1998). These principles are designed to provide

sufficient (or minimum) evidence and require that the
underlying assumptions are fulfilled and that model resi-
duals are uncorrelated. Explanation of the variability is
a more difficult task than trend detection because it re-
quires identification of all (or the most important) sources
of the variability and the proper quantification of each
attribution (Stott et al., 2010; Hegerl and Zwiers, 2011).
To achieve the goal of appropriate attribution of data
variability, we need to identify the best correlation
between the observations and each covariate (i.e., a vari-
able that is possibly predictive of the data variability) via
a sequential process of variable selections and model com-
parisons; these processes ensure that the resulting model
is adequate (neither underfitted nor overfitted). Addi-
tional techniques are also available for describing com-
mon phenomena such as changing magnitude of
variability or varying seasonal cycle over time (Cleveland
et al., 1990).

A further important aspect for atmospheric composi-
tion trends is the detection and/or quantification of trend
changes. This is especially relevant in the policy arena to
determine the efficacy of certain air quality measures (Box
and Tiao, 1975) or to examine whether the changes can be
attributable to other natural or human-caused factors
(Reinsel et al., 2005; Friedrich et al., 2020a).

In addition to being one of the most variable trace
gases (as shown in the Introduction), ozone’s extreme va-
lues are of particular interest to the research community
and regulatory agencies. For example, epidemiologists
might use the daily maximum 8-h (MDA8) average to
quantify human exposure to ozone pollution (Turner et
al., 2016), or the number of days per summertime period
in which the MDA8 exceeds 70 ppb to assess the fre-
quency of high ozone events (the latter metric does not
produce a continuous response, and an adjustment for the
count data needs to be made by using generalized linear
or additive models, Chang et al., 2017). For regulatory
purposes, the U.S. Environmental Protection Agency uses
the annual fourth highest MDA8 ozone value at a moni-
toring site when identifying regions that comply with the
National Ambient Air Quality Standards for ozone, while
Europe’s ozone target value is based on the 26th highest
MDA8 value of a year (see also Fleming et al., 2018).

It is crucial to recognize that extreme values are data
characteristics and not outliers. The formal definition of
an outlier can be considered to be a data point that shows
a substantial deviation from other data points, so it is
reasonable to suspect that this data point is generated
by a different process or mechanism (Hawkins, 1980; Ag-
garwal, 2015). Although this statement is qualitative, it
suggests the extreme values should not be seen as outliers
if their occurrence can be justified through scientific
explanation. The interest in extreme ozone values intro-
duces an important consideration for this study: Naturally
occurring extreme values are not equivalent to outliers
which are defined as erroneous values. Extreme values
may indeed contain important information that is rele-
vant for trend analysis. Specifically, nonparametric meth-
ods like the often-applied Sen–Theil estimator, do not
distinguish between outliers (presumably due to
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instrumental error) and data points that simply present
larger deviations from the median (presumably due to
natural variability); as a result, this method ignores up
to 29% of the data set. However, those neglected data
in the Sen–Theil estimator can be put to good use in
estimating changes of extreme events. As discussed later,
quantile regression is designed to efficiently provide trend
estimates based on multiple quantiles (not just the
median) with a single specification.

An additional trait of atmospheric chemistry observa-
tions is the measurement uncertainty, associated with
instrumental and sampling conditions, and/or instrument
calibration. For example, balloon-borne ozonesondes
operated by NOAA’s Global Monitoring Laboratory (GML)
have a typical sampling frequency of once per week, and
therefore aggregated monthly means and standard devia-
tions (or errors) are based on only 4 or 5 observations.
These aggregated time series are often considered to be
highly uncertain due to low sampling frequency combined
with inherent natural variability (Saunois et al., 2012;
Chang et al., 2020).

All the uncertainties discussed above have an impact
on the trend estimate and/or its estimated error, and
therefore, each factor must be considered carefully to
avoid biased or inappropriate conclusions. Even though
a large set of complications can be introduced by data
measurement methods, for example, instrumental
stability/accuracy (Ambrosino and Chandler, 2013; Weath-
erhead et al., 2017; Von Brömssen et al., 2018), represen-
tativeness of the measurements (Weatherhead et al.,
2017), and sampling frequency (Chang et al., 2020), these
issues are beyond the scope of this study. Here, we focus
on various approaches to study the characteristics of the
available data, for a detection of trends in single time
series and multisite data.

3. Statistical methods
The methodology is organized as follows: discussion of
relevant factors, construction of the statistical relation-
ships, possible extensions, and an approach to report the
robustness of trends.

3.1. Ingredients in a trend detection model

To represent the data variability in an atmospheric time
series, we need to identify the relevant factors that can
potentially affect the trend detection. For example, we can
decompose a time series into several components as
follows:

obs ¼ trendþ seasonal cycleþ covariatesþ error; ð1Þ

where the first three terms link ozone to the long-term
change, cyclic seasonal pattern, or external variability
(these variables are referred as covariates, and their mag-
nitude or correlation with ozone can be measured by
regression coefficients), and the last term represents the
model residuals. The feature of this regression models
include: (1) the trend and seasonal components can be
further expressed as various forms, for example, the trend
component can be a line, a piecewise linear function (i.e.,
change point analysis), or any other nonlinear shape

deemed appropriate, and the seasonal cycle can be a com-
bination of sine, cosine or any periodic functions; (2) this
model remains linear and additive (nonlinear regression
is not considered here), even if the trend and seasonal
components are nonlinear; and (3) the relevant covari-
ates should be considered by the data characteristics and
scientific question to be addressed. For example, the
addition of a meteorological adjustment might be impor-
tant for short-term trend detection, attributing the data
variability, and reducing the magnitude of uncertainty
(Camalier et al., 2007; Wells et al., 2021), or in multisite
data we can use a spatial-referenced covariate to account
for inter-site correlation (Chandler and Scott, 2011).

3.2. Investigation of statistical relationships

by different methods

In contrast to the identification of important components
discussed above, the methods introduced in this section
focus on how the statistical relationships can be explored
by several different approaches. To simplify the scenario,
the demonstration is made through a basic equation for
the linear trend detection of a time series, yt, that can be
expressed as yt ¼ b0 þ b1t þNt ; t ¼ 1; . . . ;T , which
involves an intercept b0, a slope b1 and residual series
Nt. There are several methods available for estimation of
these coefficients (e.g., based on median, trimmed mean,
weighted mean . . . etc.). These methods can be classified
into 2 categories:

� Classical nonparametric approaches: These ap-
proaches often place the emphasis on no
assumption being made for the data distribution
and therefore are usually median-based methods.
The Sen–Theil estimator and Siegel’s repeated
medians are the most common nonparametric
methods (Theil, 1950; Sen, 1968; Siegel, 1982). The
Sen–Theil estimator finds the overall median
change by calculating all pairwise differences
between observations. The Siegel’s repeated med-
ians method finds the overall trend in 2 steps:
(1) For each observation, a median change is cal-
culated from the median of the pairwise difference
against all the other observations, and (2) the
overall trend is then assigned to the median among
all these median values. Thus, the Siegel’s estimator
is a more robust and computationally expensive
variant of the Sen–Theil estimator. Neither the
Sen–Theil nor Siegel’s methods involve any
numerical optimization, instead they assign the
trend from pairwise differences or individualized
medians.
� Regression based approaches: The fundamental
optimization of a simple linear equation is
achieved by finding the optimal coefficients for
(b0, b1) that minimizes the following loss func-
tions:

XT

t¼1

ðyt � b0 � b1tÞ2 for the mean estimator of the coefficients; or
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XT

t¼1

jyt � b0 � b1tjfor the median estimator of the coefficients:

The first equation is called the ordinary least squares
(OLS), and the second equation is called the least absolute
deviations (LAD).

The OLS estimator is notoriously vulnerable to aberrant
outliers. Therefore, several adjusted techniques are avail-
able for avoiding the influence of aberrant outliers. (It
should be noted that traditional simple and multiple lin-
ear regressions are mainly based on OLS.):

1. LTS (least trimmed squares, Rousseeuw, 1985): The
LTS is designed to minimize the residual sum of
squares over a subset of data, and exclude
potential outliers from the fit (which is deter-
mined by the numerical optimization).

2. LMS (least median of squares, Rousseeuw, 1984):
This approach replaces the “sum” in least squares
criterion with the median of squared residuals in
the loss function:

median
t
fðyt � b0 � b1tÞ2g:

By replacing the sum with the median, the influence of
outliers on the optimization can be eliminated.

3.WLS (weighted least squares): The WLS gives lower
weights to the observations with higher uncer-
tainties, since high uncertainty is often associ-
ated with extreme observations (although the
appropriate weights are often difficult to quan-
tify). If the weights wt for each time t are sup-
plied, the loss function for OLS can be modified
as:

XT

t¼1

w2
t ðyt � b0 � b1tÞ2:

WLS is one of the remedies for the heteroscedasticity
(i.e., data variance is not a constant over time, see Appen-
dix S2). This approach is particularly useful when repeated
measurements are available, as long as the variance at
each time point can be properly quantified. The time
series in this paper do not have the associated variance
series, therefore we use the inverse of monthly variance
(derived from long-term mean series in each month) for
data weighting (Schwartz, 1994).

4. Ridge regression (Hoerl and Kennard, 1970): this
method prevents the problem of overfitting to
the outliers or noisy observations by altering the
loss function as:XT

t¼1

ðyt � b0 � b1tÞ2 þ ljjbjj22; where jjbjj22 ¼ b2
0 þ b2

1 � c <1;

ð2Þ

the second term is a parameter l associated with L2
(Euclidean) norm jj � jj2 which constrains the regression

coefficients within reasonable ranges. Even though it
looks like a simple adjustment, this approach essentially
introduces one of the most important concepts in modern
statistics, i.e. regularization (or roughness penalty). The
regularization is an iterative process to filter out the noisy
variations from systematic patterns in the data structure.
In the current setting, we only have 2 parameters that
need to be determined, but if we choose to extend the
model, such as replacing the linear term with a nonlinear
Loess (the locally weighted smoothing; Cleveland et al.,
1990), the result will be many undetermined (hyper-)para-
meters. The regularization technique can prevent overfit-
ting to aberrant outliers and unrealistic wiggles caused by
the noisy observations, and ease the multicollinearity if
multiple covariates are required for explaining the data
variability (Tikhonov et al., 2013). Note that Equation 2 is
presented as an illustration, and the regularization does
not have to apply to the intercept.

5. Lasso (least absolute shrinkage and selection
operator, Tibshirani 1996): This method replaces
L2 norm (Euclidean distance) with L1 norm
(absolute-value distance) in Equation 2, that is,
jjbjj1 ¼ jb0j þ jb1j. In the multivariate setting, L1
norm outperforms L2 norm in terms of variable
selection, as L1 norm tends to reduce the model
complexity and selects fewer covariates (Leng et
al., 2006).

6. QR (quantile regression, Koenker and Zhao, 1996):
The QR differs from the techniques above, as it is
an optimization-based approach to find the
quantile trend (in addition to the median) by
minimizing the following loss function:

XT

t:yt�b0þb1t

qjyt � b0 � b1tj þ
XT

t:yt<b0þb1t

ð1� qÞjyt � b0 � b1tj;

where q is the quantile. When q ¼ 0.5, the solution is
equivalent to the LAD, labelled as QR-50th in this study).
Numerically, QR is a natural approach to quantify quantile
changes other than the median.

Even though we use a simple linear equation for the
above demonstrations, these can be extended to the mul-
tivariate case (Equation 1), that is, we can stack up all of
the temporal indices and covariates into a matrix Xt with
a corresponding coefficients vector b, shortening the trend
equation to yt ¼ Xtbþ Et ;t ¼ 1; . . . ;T . One can replace
yt � b0 � b1t in the loss functions with yt � Xtb in any of
the regression based approaches. It should be noted that
the classical nonparametric approaches do not involve any
numerical optimizations and loss functions, thus this mul-
tivariate extension does not apply to those methods.

Further information on these methods is provided in 3
appendices in the supplemental material. Appendix S1
gives a historical context explaining why these techniques
were developed and how they took advantage of increas-
ing computing power. Appendix S2 discusses fundamen-
tal assumptions related to the OLS and how other robust
techniques can be an alternative (see also Chandler and
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Scott, 2011, and Wilks, 2011). Appendix S3 describes how
the autocorrelation can be accounted for in regression
based approaches.

3.3. Incorporation of various complexities

in suitable methods

When discussing the assumptions and formulation of
trend detection models, the distinction between various
relevant factors (as described in Section 3.1) and robust
techniques (as described in Section 3.2) is poorly docu-
mented. The standard textbooks for time series analysis
often place the primary focus on how to account for the
relevant factors, for example, the Box-Jenkins methodol-
ogy, which is based on the class of autoregressive moving
average models and their extensions (Brockwell and Davis,
1987; Hamilton, 1994; Von Storch and Zwiers, 2001; Lüt-
kepohl, 2005; Chandler and Scott, 2011; Durbin and
Koopman, 2012; Box et al., 2015), and is (mostly) built
in the class of OLS/GLS models. Whereas several different
robust techniques have been proposed in parallel by other
schools of thought in the statistical community, we can
now combine the autocorrelation and covariates into
a more advanced technique that is resistant to the impact
of outliers and the non-normally distributed error term,
instead of relying on the GLS models (which are less resis-
tant to these impacts).

In the meantime, some fields of environmental
research have developed different opinions regarding the
calculation and hypothesis test of trends, such as the
application of the slope from the Sen–Theil method and
the P value from the Mann–Kendall test in water quality
research (Hirsch et al., 1982; Gilbert, 1987; Helsel and
Hirsch, 2002). The classical nonparametric approaches
have not been adopted within the realm of formal statis-
tical education (e.g., the references listed above), not only
because these approaches cannot incorporate the relevant
factors naturally but also because they treat the data sam-
ples in a rather wasteful way. Even though these ap-
proaches are not affected by extreme values, ignoring
extreme values implies that a portion of the data will have
no influence on the trend estimator. To acknowledge the
value of all observations (including the sampling fre-
quency and temporal coverage behind it), we do not rec-
ommend the Sen–Theil or Siegel’s estimators because
they automatically ignore up to 29% or 50% of the data
without even checking to see whether those data are actu-
ally outliers. If such a large portion of data is presumed to
be problematic, data quality control should be performed
before making any attempt at trend analysis.

Based on the above arguments, the regression-based
methods provide an unparalleled advantage over classical
nonparametric approaches because their capabilities are
designed to continually evolve as analysts tackle more
complex and larger data sets than ever before, facilitated
by inexpensive modern computer resources. In addition to
the Box-Jenkins methodology used to deal with autocor-
relation, and harmonic functions used to deal with
repeated seasonal patterns, several useful extensions are
available:

� The identification of a change point of the trends
is an important topic, especially if there are known
factors or interventions which could induce
a change of trends in the time series. Typically,
a meaningful trend detection of an atmospheric
time series requires at least a few decades of data
(Weatherhead et al., 1998), so in general, we do
not expect the actual trends to be highly nonlin-
ear. When a turnaround of trends (see the analysis
in Section 5) and/or sub-seasonal patterns are
required, we can extend a linear trend and a reg-
ular seasonal cycle, that is, from
yt ¼ b0 þ b1t þ gsinð2p Month

12 Þ þ Zcosð2p Month
12 Þ þNt , to

a combination of piecewise trends and higher
frequencies of harmonic functions as follows:

yt ¼ b0þ b1t þ b2maxðt � tc;0Þ½ �

þ
XQ

q¼1

gqsinð2p qMonth
12

Þ þZqcosð2p qMonth
12

Þ
" #

þNt ;

ð3Þ

where b2 is an adjustment of trends after a change point
occurred at a time tc, and Q controls the frequency of
harmonic functions. Examples for analyzing such pro-
blems are provided by previous studies (Reinsel et al.,
2002, 2005). In addition to a piecewise linear function,
we could directly specify regression spline functions (anal-
ogous to a seasonal-trend decomposition by the Loess
smoother) to represent the nonlinear trends without
assuming any form of nonlinearity in advance (e.g., poly-
nomials; Wood, 2006).

� Until now, the focus has only been placed on the
trend detection of a single (aggregated) time
series. However, analysis of an ensemble of mul-
tiple correlated time series at the same time is also
desirable in some cases, for example, data in close
proximity are commonly more similar, and a mea-
sure to borrow this similarity can often offer
a better quantification of ensemble trends and
their associated uncertainty (Park et al., 2013;
Chang et al., 2020). Whereas the relationship
between different time series can be highly non-
linear or very complex (e.g., spatial variability), the
class of generalized additive models (GAM, Hastie
and Tibshirani, 1990; Wood, 2006) allows incor-
poration of spatial variability and complex inter-
actions as covariates in the trend model (Augustin
et al., 2009; Chang et al., 2017; Wood et al., 2017).
In a situation where we have a collection of time
series from multiple sites in meaningful spatial
proximity, such as the ozone monitoring network
across the southwestern United States, we can also
modify the trend model as:

obs¼ trendþ seasonal cycleþ spatial inhomogeneitiesþ error;

in order to account for potential spatial inhomogeneities
(see Section 6). Therefore, this type of modeling approach
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can be very flexible. Since a large amount of parametrization
is usually required to capture the potential spatial variability
or any other nonlinear relationships (which can be estimated
by a linear combination of various basis functions), the
regularization to avoid overfitting is implicitly included
for the model fitting of GAM (Wood, 2006).

� The trend estimation can be made for either mean
or specific quantiles (Koenker and Hallock, 2001;
Fasiolo et al., 2020), including a single time series
or multiple time series from a monitoring
network.

These extensions make the regression-based methods
more efficient and satisfactory than the traditional non-
parametric approaches.

Before selecting a trend detection technique based
solely on its basic description, we emphasize the impor-
tance of examining which uncertainties have been taken
into account by the different techniques. Regression-
based methods are often considered to be passive learning
tools that can only handle the specific task specified by
the model formulation, and nothing more. For example,
a regression model can handle seasonality and autocorre-
lation only if we explicitly specify these issues in the
model formulation. Therefore, if additional forcings, such
as atmospheric circulations or meteorological conditions,
are considered to be critical to identify the trend and its
uncertainty; they should be specified in the models (tech-
niques cannot be a surrogate for these covariates). It is
always good practice to inspect residuals for any
“suspicious patterns” and use this information to adapt
the statistical model if necessary (e.g., Guillas et al., 2006).

The above discussion has 2 key messages for the ana-
lyst: (1) specification of the trend model, for example,
identification of relevant covariates, should be motivated
by the scientific question to be addressed; the techniques
only help us with improving quantification of trends and
their uncertainty; and (2) we should not judge a method
and its result only by its name or basic descriptions; appli-
cation of advanced techniques, for example, implementa-
tion of overfitting prevention through the GAM, does not
mean that autocorrelation or any other important factors
relevant to trend detection have been taken into account.
Instead, evaluation should be made by carefully inspecting
any factors that are deemed important for the trend
analysis.

3.4. Using signal-to-noise ratio to assess

the robustness of trends

To assess the uncertainty of the trend estimate, in the past,
a common rule for trend detection has been to label a trend
as “statistically significant” if the magnitude of the esti-
mated trend is greater than 2 standard errors from zero,
which corresponds to a P value less than a threshold of
0.05. If a trend did not pass this test, then it was labeled
as “statistically insignificant.” Recent recommendations
have called for abandonment of the phrase “statistical sig-
nificance,” for example, Amrhein et al. (2019) and Tarran
(2019), supported by the special issue “Statistical Inference

in the 21st Century: AWorld Beyond p < 0.05” in the peer-
reviewed journal, The American Statistician (https://www.
tandfonline.com/toc/utas20/73/sup1#). This recommen-
dation is based on the fundamental concept that “statistical
significance was never meant to imply scientific im-
portance” (Wasserstein et al., 2019) and “scientific conclu-
sions [ . . . ] should not be based only on whether a P value
passes a specific threshold” (Wasserstein and Lazar, 2016).

The advice from Wasserstein et al. (2019) is to abandon
the use of the phrase, “statistically significant,” and simply
report the P value for all trend calculations; any conclu-
sion that a trend is scientifically meaningful should be
accompanied by a thoughtful evaluation and discussion
of the data. Wasserstein et al. (2019) also recommend that
researchers consider using alternate statistical methods to
replace or supplement P values. Following this advice, we
consider the signal-to-noise ratio (SNR, i.e., the ratio
between the magnitude of the trend and its sigma uncer-
tainty [standard error]) in addition to slope, confidence
interval and P value when evaluating a trend (see Section
6). This method allows us to distinguish a strong trend
with a low uncertainty (i.e., a higher ratio) from a strong
trend with a high uncertainty (i.e., a lower ratio). A higher
SNR indicates stronger confidence in the resulting trend
detection. Likewise, one could imagine a situation in
which greater confidence is placed in a trend with low
magnitude but very low uncertainty (high ratio), com-
pared to a trend with high magnitude and high uncer-
tainty (low ratio).

4. Quantifying autocorrelation and
uncertainty in different chemical species
4.1. Quantifying autocorrelation

We continue our exploration of the data characteristics
presented in Figure 1 by first examining the autocorrela-
tions in different trace gases measured at Mauna Loa
Observatory and reported as monthly means; we then
compare various fits to those time series. Figure 2 shows
the autocorrelation function (ACF) and partial autocorre-
lation function (PACF) for the different trace gases based
on monthly means (after deseasonalization). ACF finds the
correlation of any time series with its lagged values (i.e.,
the correlation is 1 at lag 0 by definition, and decreases
afterwards). PACF finds the correlation after excluding the
variations that can be explained by the previous lag(s), and
therefore PACF plots typically have a spike at lag-1, which
indicates a large portion of the higher-order autocorrela-
tions can be explained or represented by the lag-1 corre-
lation. Except for CO and ozone, the other gases have
a slow decay ACF, but have a single spike at lag-1 in the
PACF. The presence of such a spike suggests that autocor-
relation persists for a period of time (over 24 lags or
months in the figure), but this behavior can be well re-
presented by an AR(1) process. The ACF for CO and ozone
reveals a substantial drop, in contrast to other trace gases.
PACF shows a different pattern for CO and ozone, with
CO having an oscillation between positive and negative
numbers in the first 6 lags. This oscillation indicates
that considerable seasonal variations remain after de-
seasonalization, requiring a more complex component
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of covariate(s) or error structure to account for the sub-
seasonality. Ozone shows weak lag-2 correlation in
PACF: the following will examine the impact of various
lags of the autoregressive model on the trends and
their uncertainty.

The first part of Table 1 reports the fitted trend
value and 2-sigma uncertainty for CO and ozone by
various lags of the autocorrelation process (with a regu-
lar seasonal cycle and a single linear trend included in

the model, i.e., the M1 model setting discussed in the
next paragraph). From a statistical point of view, the
OLS estimate of the trend value (which does not
account for autocorrelation) remains unbiased in the
presence of autocorrelation (i.e. the estimate is not sys-
tematically different from the truth). However, the
autocorrelation does result in underestimated uncer-
tainty for the OLS, with the OLS estimators having the
lowest uncertainty for both ozone and CO. Due to
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Figure 2. Autocorrelation function and partial autocorrelation function for different chemical species. Trace
gases are measured at Mauna Loa Observatory (MLO), Hawaii (after deseasonalization). DOI: https://doi.org/10.1525/
elementa.2021.00035.f2
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a stronger autocorrelation in the CO time series, the
magnitude of increased uncertainty is also larger than
that for ozone. In terms of the model comparisons by
R2 and mean square error, no substantial improvement
was found by increasing the lag of autoregressive pro-
cess for either CO or ozone (not shown), but the max-
imal signal-to-noise ratio is achieved by AR(2) process
for CO and AR(1) process for ozone.

4.2. Exploring different complexities of data

characteristics

To illustrate the different levels of complexity between the
trace gas time series, we further compare several model
specifications listed as follows (we do not show the results
for N2O and SF6):

M1: fixed seasonality þ linear trend,
M2: fixed seasonality þ nonlinear trend,
M3: fixed seasonality þ nonlinear trend þ varying

seasonality,
M4: fixed seasonality þ nonlinear trend þ varying

seasonality,

where the bold fonts indicate that regularization has
been applied to this component. Whereas the seasonal
cycle is essential in time series modeling, different ap-
proaches to estimate this term do not have a noticeable
impact on the results of the estimates of the other terms
in the model (Weatherhead et al., 1998), including the
regularization. The varying seasonality component essen-
tially represents the short-term variability (with respect to
the long-term trend). Trend detections based on similar
decompositions of a time series can be commonly found
in the literature (e.g., Boleti et al., 2018, 2020). These
equations are built hierarchically by changing or adding
a single component only. Since the variations for CO2 and
methane are relatively steady, a simple approach is ex-
pected to capture the most variability. The fitted results
from models M1 and M2 for CO2 and methane are shown
in Figure 3. Even though the CO2 record shows a slight
departure from the straight line, it highlights the potential
acceleration of increase in recent years. The distinction
between linear and nonlinear fits (specified by the penal-
ized cubic regression splines) is more obvious for the
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Table 1. Comparison of (a) fitted trends, 2-sigma uncertainty [ppb decade–1], and signal-to-noise ratio (SNR) from
various lags of autocorrelations; (b) fitted quality from various fits using R2, MSE and GCV score; and (c) linear trend
estimates when incorporating different covariate(s) for CO and ozone at MLO. DOI: https://doi.org/10.1525/
elementa.2021.00035.t1

a. Statistics from various lags of autocorrelations

OLS AR1 AR2 AR3 AR4 AR5 AR6

CO Trend –5.85 –5.68 –5.73 –5.50 –5.76 –5.49 –5.65

2-Sigma 0.89 2.68 1.72 2.84 1.91 2.79 2.33

SNR –13.12 –4.24 –6.65 –3.88 –6.04 –3.93 –4.84

Ozone Trend 0.99 0.99 0.99 0.99

2-Sigma 0.30 0.43 0.48 0.48

SNR 6.64 4.65 4.04 4.12

b. Fitted quality from various fits

M1 M2 M3 M4 M5 M6 M7 M8

CO R2 81.8 82.6 90.9 86.9 84.8 84.8 84.2 84.9

MSE 55.1 50.7 27.4 39.6 46.0 45.9 47.7 45.6

GCV 57.9 54.9 1095.5 51.4 50.3 50.3 52.1 50.4

Ozone R2 58.5 60.0 97.2 75.4 77.0 75.3 64.7 77.0

MSE 20.9 20.2 1.4 12.4 11.6 12.5 17.8 11.6

GCV 21.7 21.3 169.8 18.0 12.2 13.0 18.9 12.3

c. Linear trend estimate with covariate(s) included

M1 M2 M3 M4 M5 M6 M7 M8

CO (AR2) Trend –5.73 –5.68 –5.73 –5.76 –5.64

2-Sigma 1.72 1.71 1.71 1.71 1.73

SNR –6.65 –6.64 –6.71 –6.72 –6.53

Ozone (AR1) Trend 0.99 1.17 0.93 0.53 1.42

2-Sigma 0.43 0.30 0.31 0.40 0.36

SNR 4.65 7.68 6.04 2.66 7.97
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methane record due to a pause of trends in the early
2000s. Both trends increase monotonically and show no
sign of turnaround, and therefore we might conclude that
the linear approximation of the methane trend (54.8
[+5.9] ppb per decade over the period 1983–2019) pro-
vides an adequate description of the trend, with a proviso
that a leveling-off period occurred in the early 2000s, and
thus, the rates of increase in the other periods are higher
than the average.

Note that the variabilities of CO2 and methane are
considered to be less variable, not only due to a lack of
complex interannual variations, but also because the mag-
nitudes of the trends are much stronger than their season-
ality. When applying models M1 and M2 to the CO and
ozone records (upper panel of Figures 4 and 5), we see
even with the nonlinear trend, the fitted results cannot
adequately capture the seasonal peaks and troughs which
show large departures from the regular seasonal cycle.
Therefore, the next step is to investigate if further curve-
fitting techniques, such as varying seasonality over time
(Ambrosino and Chandler, 2013), can improve the quality
of the fit and, more importantly, the trend detection. How-
ever, it is meaningless to pursue a perfect fit without
proper scientific interpretations of the model

specifications. To avoid overfitting, we illustrate the fits
without and with regularization for the varying seasonal-
ity (from models M3 and M4, respectively).

The effect of regularization is displayed in the lower
panels of Figures 4 and 5: The fit from M3 indeed captures
many peaks and troughs, but only minor differences can be
seen from the fits between M2 and M4, especially for the
trend component. Therefore, certain information metrics
are needed for quantifying those model fits. We use three
metrics to assess the quality of the fit: (1) R2: coefficient of
determination; (2) MSE (mean-square error): the overall
mean squared residual between model fitted and observed
values; (3) GCV (generalized cross validation): the mean
squared error in a leave-one-out test. Lower MSE and GCV
indicate a better fit. However, a low MSE accompanied with
a high GCV often indicates severe overfitting because it
implies when we randomly remove 1 data point and refit
the model under the same setting; the new model will have
a very poor performance when predicting this training
point (also known as poor generalizability).

The second part of Table 1 reports these 3 metrics for
CO and ozone (the models M5–M8 will be discussed later
in this section): (1) the fit from M2 is better than M1 for all
metrics because the general nonlinearity is taken into
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Figure 3. Linear and nonlinear fits to the CO2 and methane time series at MLO. The smooth curve or straight line
is the trend component extracted from the full model fit. DOI: https://doi.org/10.1525/elementa.2021.00035.f3
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account, even though the level of nonlinearity looks
minor for both CO and ozone; (2) the fit from M3 shows
a substantial improvement on R2 and MSE over other
models but also has the worst GCV score, which implies
severe overfitting as discussed above; (3) the only differ-
ence between M3 and M4 is the application of regulariza-
tion on the varying seasonality term, with M4 achieving
a good balance between fidelity (low MSE) and complexity
(low GCV). Overall, M4 is the best model in terms of curve
fitting and representing the underlying process; it does
not necessarily have a strong impact on the trend esti-
mate. In this case, a linear approximation of the trends
(e.g., from M1) seems to be adequate, even though it
might leave plenty of room for improvement.

4.3. Incorporating meteorological covariate(s)

At this stage, we only consider the very basic components
that are relevant to trend detection (i.e., autocorrelation
and seasonality) and the novel technique to capture the
irregular seasonality. However, there is also a different
approach to improve the model predictability: incorpora-
tion of relevant covariates (e.g., meteorological variables).
There is a clear physical basis for taking this approach as

previous work has shown correlation between ozone and
temperature (Rasmussen et al., 2012; Pusede et al., 2015),
and for the specific case of Mauna Loa, ozone trends have
been shown to differ between dry and moist air masses
(Gaudel et al., 2018). Instead of using a varying seasonality
component (i.e., M4) to account for the irregular part of
the time series, we further specify different models that
extend from M2 via:

M5: M2 þ dewpoint,
M6: M2 þ relative humidity,
M7: M2 þ temperature,
M8: M2 þ dewpoint þ relative humidity þ

temperature.
In this example, the regularization aims to avoid over-

fitting by functional components (e.g., nonlinear trends
and seasonality: These terms are approximated by the
spline functions); thus, we do not apply the regularization
to the linear term (i.e., the correlation between ozone and
a meteorological variable is only measured by a single
regression coefficient). Determination of the best (sub)set
of covariates is also known as the variable selection, the
conventional approach relies on the statistical significance
and P value of a given regression coefficient, or relies on
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Figure 4. Various fits to the CO time series at MLO. Various models include (top) linear and nonlinear trends and
(bottom) an additional varying seasonality component with and without regularization. The smooth curve or straight
line is the trend component extracted from the full model fit. DOI: https://doi.org/10.1525/elementa.2021.00035.f4
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the Lasso technique to directly rule out the unimportant
covariate(s) (however, for an illustrative purpose, we do
not adopt this approach here). Since we do not use the
P value as the sole piece of evidence for evaluating a trend
(Wasserstein and Lazar, 2016), we use the same metrics
listed above to assess the model fits. From the statistics in
Table 1, the dew point (M5) is the most important vari-
able to explain ozone variability at MLO (Gaudel et al.,
2018), followed by relative humidity (M6) and tempera-
ture (M7). Once the dew point is accounted for, the inclu-
sion of 1 or 2 additional covariates (e.g., M8) does not
substantially improve the model fit.

The fitted result of M5 (dew point) is shown in the
upper panel of Figure 6, revealing substantial improve-
ment with respect to M2 in Figure 5. More impor-
tantly, with the meteorological adjustment, the
nonlinear component from M2 is almost degenerated
to a line by the regularization, which indicates that
a consideration of nonlinearity is not required in this
case. From the summary ozone statistics in the second
part of Table 1, we can see that inclusion of dew point
as a covariate reveals an almost linear trend and

produces a lower GCV score than either the nonlinear
fit from M2 or the more complicated numerical opti-
mization from M4.

The lower panel of Figure 6 also compares the residual
series fromM2,M4, andM5; except for an overlapping single
spike in the late 1970s, we can see a similar error pattern
between M4 and M5; thus, the complex approach from M4
might have detected the signal of meteorological phenom-
ena. Therefore, inclusion of essential covariates is the key to
improving model predictability rather than searching for
a numerical method that may not be meaningful from
a physical or scientific perspective. Nevertheless, if the essen-
tial covariates are unknown, the novel technique might be
useful to identify potential signals out of the residuals.

To quantitatively summarize the trends, we replace the
nonlinear components in M5–M8 with linear trends and
report the results in the third part of Table 1 (using AR(2)
process for CO and AR(1) process for ozone). For CO, M5
outperforms M1 in terms of R2, MSE, and GCV, but the
trend estimate and uncertainty are almost identical;
whereas under the same circumstance for ozone, the trend
uncertainty is substantially reduced from M5 (i.e.,
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Figure 5.Various fits to the ozone time series at MLO. Various models include (top) linear and nonlinear trends
and (bottom) an additional varying seasonality component with and without regularization. The smooth curve or
straight line is the trend component extracted from the full model fit. DOI: https://doi.org/10.1525/
elementa.2021.00035.f5
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incorporation of dew point variation). Therefore, the trend
detection and quantification are a rather complex prob-
lem (the method works for ozone, but it doesn’t provide
any advantage for CO).

This example shows that different levels of complexity
influence trend detection of atmospheric time series,
including: (1) the magnitude of autocorrelation could
have a strong impact on the trend uncertainty; (2) trend
detection is a different task from curve fitting, so pursuing
a high R2 value or a perfect fit through the numerical
method is not the primary goal for trend detection. Also,
a model selected by a single information metric (e.g., max-
imal R2 or minimal MSE value) does not imply that the
model is appropriate; and (3) the novel technique is only
useful when we specify the appropriate model, requiring
us to consider the model’s implications for bad inference
(fitting nonmeaningful changing seasonality) and good
inference (finding that nonlinearity of trends can be
attributable to meteorological variability). We made this
demonstration by showing that a linear fit (analogous to
a GLS routine) with an appropriate model formulation can
outperform the nonlinear fit with a complex numerical
optimization (via a GAM framework).

In terms of trend detection, even though the linear
trends in this section show a departure from zero at the
95% confidence level regardless of autocorrelation or cov-
ariates, this outcome is simply due to the signal being
much stronger than the noise. Rather than limiting this
analysis to just one or a handful of time series, which may
result in an incomplete or biased view of the impact of
autocorrelation, Appendix S4 in the supplementary mate-
rial provides a demonstration of the impact of autocorre-
lation on short-term trend detection. The demonstration
relies on 1,728 globally distributed time series based on
monthly tropospheric column ozone values detected by
the OMI/MLS satellite instruments (from October 2004
through December 2019; Ziemke et al., 2019), and it
clearly shows that substantial discrepancies arise when
ignoring autocorrelation.

5. Using quantile regression to explain
the changes in extreme events
The previous section showed that a perfect fit to a time
series using a numerical method is not a solution for trend
detection, rather relevant covariates might be the key for
improving model predictive power. However, the complex
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Figure 6. Model fits to the ozone time series with meteorological adjustment at MLO. The upper panel shows the
observed and modeled values, and the lower panel shows a comparison of residual series from different model fits.
DOI: https://doi.org/10.1525/elementa.2021.00035.f6
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variability of an atmospheric time series, such as ozone,
cannot always be attributable to specific factors, and can
also be subject to measurement uncertainty. Whereas sev-
eral trend detection techniques are able to describe the
central tendency of a time series, usually represented by
mean or median based slope estimates, consideration of
changes in the extreme values (e.g., 5th or 95th percen-
tiles) should also be a part of trend analysis, as the central
and extreme tendencies are complementary components
of an atmospheric time series (Simon et al., 2015; Gaudel
et al., 2020). An effective method for quantifying trends
across the range of observations (e.g., low, median, and
high values) is quantile regression.

As a demonstration of quantile regression, we focus on
long-term surface ozone time series from 3 remotely
located monitoring sites (Cooper et al., 2020a, 2020b):
the coastal site of Mace Head, Ireland, the high elevation
site of Mt. Waliguan in central China, and Schwarzwald–
Sued in a low elevation forested region of southwestern
Germany. These time series are at least 20 years in length
(i.e., extend back in time to at least 1995) and are

deseasonalized in order to focus on the irregular part of
the time series (Cooper et al., 2020a). These 3 sites were
selected because their central tendency is relatively linear
(as illustrated by the Loess smoother), which facilitates the
comparison of the change in extreme quantiles with
respect to the central tendency. Note that the low and
high percentile ozone trends at MLO are relatively consis-
tent with the mean trends (with respect to the selected
sites above), so the results are not shown here.

Figure 7 shows the monthly anomaly series from the 3
sites. To demonstrate the unique capability of quantile
regression, we also fit several trend estimates from differ-
ent techniques (and the Loess smoother for an indication
of variability on shorter time scales). As described earlier
in this paper, autocorrelation results in underestimated
trend uncertainties but does not result in biased trend
estimates (thus, the lines from OLS and GLS are almost
identical). Even though some trend estimates could be
more sensitive to outliers or extreme values, with suffi-
ciently long time series (and no aberrant outliers), most
techniques yield similar trends, particularly those
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Figure 7. Monthly ozone time series and mean trends at Mace Head, Mt. Waliguan, and Schwarzwald–Sued.
Regression lines from several trend detection techniques are fitted. The nonparametric Loess smoother and its 95%
confidence interval is highlighted with a gray envelope to illustrate the potential tendency of the trend. Each red tick
on the x-axis indicates that a monthly value is missing. DOI: https://doi.org/10.1525/elementa.2021.00035.f7
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techniques that are designed to avoid the influence of
outliers by using median slope estimates (e.g., Sen–Theil,
Siegel, QR-50th and LMS), by removing the most extreme
data (e.g., LTS), or by implementing regularization (e.g.,
Lasso and ridge regression). It should be noted that only
the LMS estimator shows a visible difference from the
other estimators at Mace Head and Mt.Waliguan, presum-
ably because the LMS estimator can be unstable in
response to small changes in the data (Hettmansperger
and Sheather, 1992). Nevertheless, since all of these tech-
niques aim to derive trends that are representative of the
central tendency of the time series, none are suitable for
the investigation of extreme events.

The quantile regression provides a natural extension to
estimate the trend at any specific quantiles (in addition to
the QR-50th for the median change in Figure 7). For
example, we show the quantile trends and their uncer-
tainty (accounting for autocorrelation) from the 5th to the
95th percentile for all 3 sites in Figure 8. The primary
indication of these plots is that the changes in different
percentiles can be inconsistent with the mean or median

trends, especially for the extreme percentiles; thus, it is
desirable to include these estimators of extreme percen-
tiles to convey our extended knowledge beyond the cen-
tral tendency. The distribution of the quantile trends at
Mace Head shows that the mean trend estimator is stron-
ger than the median estimator and consistently stronger
than the estimators for all percentiles greater than the
40th percentile. Because the estimators for the 5th and
10th percentiles are stronger than the mean estimator, we
can conclude that thepositivemean trend is largely drivenby
the strong increases of the lower percentiles. Similarly, the
increasingmean trend atMt.Waliguancouldbedrivenby the
strong enhancements of the high percentiles (Lefohn et al.,
2017), and the decreasing trend at Schwarzwald–Sued could
be driven by the strong decline of high percentiles, although
the uncertainty of the quantile trends mostly overlaps with
the uncertainty of the mean trends.

In addition to the quantile linear trend analysis demon-
strated above, we further show that the change point anal-
ysis can also be carried out by quantile regression (Equation
3, but only applied to deseasonalized anomalies). Figure 9
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Figure 8. Various illustrations for the distributions of the 5th–95th quantile trends and the 95% confidence
intervals. Demonstrations are made for the ozone time series measured at Mace Head, Mt. Waliguan, and
Schwarzwald–Sued, with the trend mean value derived by GLS-AR1 model provided for reference. DOI: https://
doi.org/10.1525/elementa.2021.00035.f8
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shows the ozone anomaly series measured at Zugspitze,
Germany (47.4�N, 11.0�E, 2,800 m). The primary feature
of this time series is that it has a clear (overall) upward
trend and a relatively steady trend before and after the late
1990s (Cooper et al., 2020a). We fit quantile piecewise
trend models to the time series, and we can see how the
changes vary at different quantiles. The largest turnaround
can be found in the change of trend at the 5th percentile,
and the upward trend at the 95th percentile since the late
1970s has paused. Nevertheless, the overall mean trend
does not show a substantial decrease after 1997. This is
another example that demonstrates how the statistical re-
lationships can be explored through quantile regression.

6. Deriving common mean and quantile trends
in multisite data
Trend analysis of a collection of multiple time series has
become a necessary task for scientific assessments nowa-
days due to the availability of a variety of monitoring data
from local to regional-scale networks. Such analysis has 2
main purposes: (1) compare trends from different loca-
tions, and (2) derive common trends within a network,
to enable the comparison of trends between different
networks.

A direct approach to achieve the first purpose is to fit
a model to each time series independently, but in reality,
the lengths of the time series are often different and the
spatial coverage of a network can change over time. In
order to truncate the data to a (minimum) common
period, a portion of data is often wasted. Also, this
approach might not explore the full potential of available
information. For example, none of the sites show a strong
trend, but a high agreement of the trends is observed
across all sites. Under this circumstance, the small signal

among all sites is expected to be representative. Therefore,
a joint statistical inference of multiple sites is a better
option to deliver a more reliable conclusion.

The irregular distribution of monitoring stations in
space is an obvious reason that a common trend cannot
be derived properly and representatively by calculating
a simple average. Given that urban surface ozone or other
pollutants can be sensitive to localized emissions (e.g.,
traffic), the data variability and trends from neighboring
locations might be different, which introduces additional
spatial inconsistencies. Due to these inherent inhomoge-
neities, as well as the fact that a network can consist of
hundreds or thousands of monitoring sites, approaches
that do not account for spatial inhomogeneities will yield
unreliable results.

The final goal of this paper is to describe methods for
quantifying regional scale trends based on observations
from large and widespread monitoring networks. For this
demonstration, a collection of daily surface ozone time
series from 168 monitoring stations across the southwest-
ern United States (California, Nevada, and Arizona) was
downloaded from the Tropospheric Ozone Assessment
Report (TOAR) database (Schultz et al., 2017; TOAR data-
base, 2017). To reduce the complexity of the problem, we
use all maximum daily 8-h averages (MDA8) limited to the
warm season (April–September) to derive the regional
trends (i.e., around 183 data points per year for each sta-
tion) over 2000–2014 using all 168 stations.

A preliminary data visualization is shown in Figure 10
by comparing the mean and quantile trends and their SNR
values derived from each individual site. We can see that
the pattern of the 95th percentile trends tends to be
negative with strong SNR, and the magnitude of negative
trends is reduced for the mean and the median MDA8
values, whereas both trends and SNR values for the 5th
percentile are centered on zero. This figure illustrates why
the multisite trend analysis is complicated, due to the
highly variable local trends. The first 2 rows of Figure
11 further display the regional 5th, 50th, and 95th MDA8
distributions during 2000–2002 and 2012–2014 (several
techniques are available for this type of analysis, see the
study by Heaton et al., 2019); details are beyond the scope
of this paper. Here, we use Gaussian process approxima-
tion through the quantile GAM (Fasiolo et al., 2020)).
Figures 10 and 11 show that a general reduction can
be expected for the 50th and 95th percentiles over the
study period, and the next step is to investigate the sub-
regional variations and explicitly quantify the regional
trends.

6.1. Investigating subregional variations

To compare the trends from different subregions, we fur-
ther approximate the 5th, 50th, and 95th regional MDA8
distributions on a 0.1� � 0.1� grid covering the monitor-
ing network for each year and derive the trend estimate
based on the GLS-AR1 model in each grid cell (we can also
directly apply quantile regression to all MDA8 values; the
result will be similar, but it requires much more compu-
tational power due to a far greater sample size). The re-
sults are shown in the third row of Figure 11: At the 95th
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Figure 9. A demonstration of change point analysis
based on quantile regression. The ozone anomaly
series is measured at Zugspitze, Germany. DOI: https://
doi.org/10.1525/elementa.2021.00035.f9

D
ow

nloaded from
 http://online.ucpress.edu/elem

enta/article-pdf/9/1/00035/486827/elem
enta.2021.00035.pdf by guest on 24 M

ay 2022



percentile, negative trends dominate across most of the
region; at the 50th percentile, the negative trends are of
a lower magnitude and there are a few additional spots
with positive trends, while the results are mixed across the
region at the 5th percentile.

The map view of SNR for MDA8 ozone trends and un-
certainties is shown in the fourth row of Figure 11. When
the ratio exceeds a value of +2, the signal of the trend is
twice as large as the estimation uncertainty, which corre-
sponds to a rejection of the null hypothesis at the 95%
confidence level. A continuous scale of SNR allows us to
gauge our confidence in a trend based on our tolerance
for noise in the time series. For example, the largest mag-
nitude of positive trends at the fifth percentile was found
over the city of Bakersfield, but the highest SNR ratio over
California was found in the Los Angeles region.

The above findings and discussion demonstrate that
reporting SNR is a useful endeavor for providing addi-
tional information on the trend uncertainty (especially
in a map view). It efficiently characterizes the quality of

the trend estimation in an objective way, without further
computation. Thus, reporting SNR is an effective and intu-
itive alternative to providing a dichotomized statement of
statistical significance based on a P value threshold since
the uncertainty cannot be dichotomized.

6.2. Deriving overall regional trends

Deriving common trends from multisite data requires the
consideration of 2 additional challenges (Chandler and
Scott, 2011): (1) data from neighboring sites are likely to
be correlated (but not necessarily with similar trends), and
(2) each site might show a unique feature due to its geo-
graphical characteristics (e.g., degree of urbanization);
thus, the general statistical model for multisite data can
be written as:

obsðs;tÞ ¼ trendðtÞ þ fixed spatial fieldðsÞ
þ varying spatial fieldðs; tÞ þ error;

where the first component is the regional trend, the sec-
ond component represents the purely spatial field (i.e., not
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Figure 10. Scatter plots of MDA8 quantile trends and SNR values in the southwestern United States.
Demonstrations are made for individual time series trend analysis of the mean, 5th, 50th, and 95th percentiles
over 2000–2014. DOI: https://doi.org/10.1525/elementa.2021.00035.f10
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Figure 11. Quantile spatial fields over two periods, distributions of trends and SNR ratios in the
southwestern United States. Demonstrations are made for MDA8 spatial distributions (in units of ppb) of the
5th, 50th, and 95th percentiles over 2000–2002 (first row) and 2012–2014 (second row) in the southwestern United
States, with corresponding spatial distributions of trends (in units of ppb per year, third row) and signal-to-noise ratios
(SNR, i.e., trend value divided by standard error, fourth row) over 2000–2014.White crosses represent the locations of
the monitoring stations. DOI: https://doi.org/10.1525/elementa.2021.00035.f11
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varying with time), the third component represents the
temporally varying spatial patterns (i.e., an interaction
term), and the error term follows an AR(1) process. The
second and third terms address the challenges pointed out
above, respectively. Therefore, even though a single trend
component is used to represent the common signal
regionally, the interaction term allows some deviations
to the regional trends from each individual station (adjust-
ments are made to the individual trend against the
regional trend for each station). The fixed spatial field is
specified through the same GAM setting described in the
last section, and the varying spatial field is represented by

the station-specific variations using a factor smoothing
technique (without actually implementing the full spatial
interpolation for each year; Chang et al., 2017; Pedersen et
al., 2019).

The upper panel of Figure 12 shows the regional
trends corresponding to the mean, 5th, 50th, and 95th
percentiles (their values are reported in Table 2). If we
simply assume all sites are independent, and calculate the
regionally pooled trend estimate and standard error (by
calculating an independent trend and uncertainty for
reach site, and then simply taking the mean and pooled
standard error, i.e., if sSEðiÞ is the standard error of the
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Figure 12. The estimated regional trends and the quantile distribution of regional trends in southwestern
United States. The regional ozone time series and trends are estimated with respect to the mean, 5th, 50th, and
95th percentiles (upper panel). Quantile distributions of regional trends are based on the 1st, 5th, 10th, . . . , 90th,
95th, and 99th percentiles, with the trend mean value derived by GLS-AR1 model provided for reference.
DOI: https://doi.org/10.1525/elementa.2021.00035.f12
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fitted trend at site i, then the pooled standard error isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1s

2
SEðiÞ=n

p
), the regional mean trend and 2-sigma

range will be –0.72 [+1.11] ppb per year. However, once
we take into account inter-site correlations, the slope is
less negative and uncertainty estimate is reduced substan-
tially (–0.32 [+0.15]). Except for the spatial irregularity,
this is also likely due to a well-recognized phenomenon
called preferential sampling (Diggle et al., 2010), for exam-
ple, an area with dense monitoring locations can be sim-
ply due to the fact that this area is more polluted and an
extensive coverage of measurements are desired to evalu-
ate human exposure. Therefore, a simple average of all
individual trends results in biased regional trends (in this
case, an overestimation of negative trends). We also
observe that the magnitude of the decreasing rate in the
95th percentile is more than twice as great as the 50th
percentile (and with a higher SNR). The regional trend for
the 5th percentile is flat, as we expected from the result in
the last section. A further demonstration is made by display-
ing the trend estimate for every fifth percentile (with the 1st

and 99th percentiles also included) in the lower panel of
Figure 12.With this amount of information, we see that the
variations are transitioning smoothly from 1 percentile to
the next (in contrast to the result from a single time series,
see Figure 8) with no spike in variability, as expected.

6.3. Sensitivity of the regional trend to the sites

with a stronger signal

The final experiment is devoted to a sensitivity and sta-
bility test regarding the impact of those sites with the
strongest signal on the estimation of the regional trend.
For the annual 95th, 50th, and 5th percentile trends, we
sequentially removed the sites with P values less than
0.01, 0.05, and 0.10 and refitted the statistical model
to investigate the influence of the remaining sites on the
regional trends. The result is shown in Figure 13: In each
panel, we first show the regional trend estimated using
all available sites (dark red), then the resulting trend after
removing the sites with P values less than 0.01 (orange),
0.05 (light blue), and 0.10 (dark blue). The features of this
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Table 2. Regional trend estimates based on the 95th, 50th, and 5th percentiles of all available MDA8 values and only
the sites with P value of slope of the trend within a certain range in southwestern United States DOI: https://doi.org/
10.1525/elementa.2021.00035.t2

Percentile Intercept (ppb) Slope (ppb yr–1) 2-Sigma (ppb yr–1) P Value SNR # Site

95th All sites 78.46 –0.75 0.22 <0.01 –6.82 168 (100%)

P ¼ [0.01–1.00] 74.22 –0.53 0.24 <0.01 –4.42 104 (62%)

P ¼ [0.05–1.00] 71.72 –0.44 0.24 <0.01 –3.67 83 (49%)

P ¼ [0.10–1.00] 69.71 –0.36 0.27 0.02 –2.67 63 (38%)

P ¼ [0.15–1.00] 68.27 –0.30 0.31 0.08 –1.94 54 (32%)

P ¼ [0.20–1.00] 67.92 –0.26 0.36 0.18 –1.44 46 (27%)

P ¼ [0.30–1.00] 67.72 –0.20 0.48 0.41 –0.83 33 (20%)

P ¼ [0.40–1.00] 65.14 –0.16 0.53 0.55 –0.60 26 (15%)

50th All sites 55.58 –0.29 0.14 <0.01 –4.14 168 (100%)

P ¼ [0.01–1.00] 54.12 –0.19 0.15 0.02 –2.53 128 (76%)

P ¼ [0.05–1.00] 53.58 –0.15 0.15 0.06 –2.00 105 (63%)

P ¼ [0.10–1.00] 53.39 –0.15 0.16 0.08 –1.88 94 (56%)

P ¼ [0.15–1.00] 53.19 –0.12 0.15 0.15 –1.60 83 (49%)

P ¼ [0.20–1.00] 53.58 –0.12 0.16 0.16 –1.50 73 (43%)

P ¼ [0.30–1.00] 52.99 –0.10 0.15 0.21 –1.33 63 (38%)

P ¼ [0.40–1.00] 53.07 –0.08 0.16 0.30 –1.00 56 (33%)

5th All sites 37.90 –0.03 0.14 0.63 –0.43 168 (100%)

P ¼ [0.01–1.00] 37.98 –0.05 0.15 0.54 –0.67 154 (92%)

P ¼ [0.05–1.00] 38.37 –0.06 0.14 0.40 –0.86 136 (81%)

P ¼ [0.10–1.00] 37.86 –0.02 0.14 0.78 –0.29 118 (70%)

P ¼ [0.15–1.00] 37.99 –0.04 0.14 0.62 –0.57 103 (61%)

P ¼ [0.20–1.00] 37.94 –0.04 0.15 0.59 –0.53 98 (58%)

P ¼ [0.30–1.00] 37.48 –0.03 0.14 0.65 –0.43 84 (50%)

P ¼ [0.40–1.00] 37.22 –0.02 0.16 0.80 –0.25 72 (43%)
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plot can be summarized as follows: (1) At the 50th and
95th percentiles, since the removed sites had relatively
strong negative trends, the magnitudes of the slopes of
the regional trends are reduced with each iteration; (2)
even though the slopes have changed, the interannual
variations remain very similar in each iteration, indicat-
ing that this statistical approach is very robust; (3) the
degree to which the slopes decrease depends on the

initial strength of the signal. For example, at the 95th
percentile, the slope is strong when all sites are used;
thus, the drop is also the strongest when sites are
removed sequentially, but at the 5th percentile, the slope
is very weak from the outset; thus, the result is insensi-
tive to the removal of sites with the strongest signal (also
because fewer sites are removed, see following
comparison).
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Figure 13. Impact of the representativeness of sites on trends. Estimated long-term changes for MDA8 using all
168 sites (red), and only the sites with P value of slope of the trend within the range of [0.01, 1.00] (orange), [0.05,
1.00] (light blue), and [0.10, 1.00] (dark blue). DOI: https://doi.org/10.1525/elementa.2021.00035.f13
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To assess the uncertainty of the sensitivity analysis, we
provide the summary statistics for the further removal of
sites according to the P value in Table 2. For the 95th and
50th percentiles, the magnitude of trends decreases and
the P value increases with each iteration. The implication
is that if the signal is strong enough (e.g., 95th percentile),
we can still derive a clear regional trend even if 50% of the
most representative sites are removed. For example, when
the individual sites with P values less than 0.10 were
removed from the analysis, the remaining sites were only
38% of the original network, but the regional trend clearly
persisted (see the 95th percentile results in Table 2). This
result is consistent with the discussion of P values by
Wasserstein et al. (2019) and demonstrates that a trend
can still contain valuable information when the P value
exceeds a threshold of 0.05; this result is also consistent
with the vector plot of trends and uncertainty demon-
strated in the TOAR special issue (Gaudel et al., 2018;
Fleming et al., 2018). In this example, we have shown that
an advanced modeling approach making full use of all
available information enables us to properly quantify the
mean and extreme quantile changes, and make robust
statements about the regional variation, which is not pos-
sible when the analysis is limited to just one or a handful
of sites.

7. Discussion of further advanced techniques
In the previous sections, we demonstrated the trend
detection of single time series by various trends techni-
ques and of multisite data based on the GAMs. These
techniques are chosen not only because their systematic
and flexible formulations allow for extensions (e.g., from
linear to nonlinear trends or from single time series to
multisite data) but also because their programming lan-
guages have similar syntax (see supplementary code).
However, trend detection techniques are continuously
evolving, and several additional developments are avail-
able and can be applied to obtain complementary
insights.

As discussed and demonstrated previously, trends in
extreme events of atmospheric compositions are of great
interest. Quantile regression is a straightforward approach
for practitioners since it shares similar theoretical back-
ground and implementation as traditional regression
models. Other perspectives are through (1) bootstrap-
based approaches (Gilleland, 2020) and (2) approaches
based on the generalized extreme value (GEV) or thresh-
old exceedance (e.g., generalized Pareto) models (Berrocal
et al., 2014; Stein, 2017; Opitz et al., 2018). Bootstrap is
a resampling procedure that can be used for estimating
the sampling distribution about the trends and/or their
uncertainty. This technique is also known for its ability to
mitigate the violation of normality assumption and for
being robust to autocorrelation and heteroskedasticity in
the errors (Politis and White, 2004; Gardiner et al., 2008;
Noguchi et al., 2011; Friedrich et al., 2020a, 2020b).
Bootstrap-based approaches are commonly adopted by
practitioners due to their simplicity. In contrast, the
GEV or generalized Pareto models currently receive less
attention because they involve greater mathematical

complexity and require some advanced knowledge in
probability theory.

In this paper, we adopt the Loess or smoothing spline
to capture the nonlinearity of the trends, but several other
approaches are also possible. Except for simple situations,
such as a turnaround or a leveling off of the trend, it is
generally difficult to interpret highly nonlinear behavior
through an explicit parametric representation or a deter-
ministic model (Chandler and Scott, 2011). Many adaptive
nonlinear trend fitting techniques are available, such as
state–space modeling (and its variant, dynamical linear
modeling; Petris et al., 2009; Durbin and Koopman,
2012; Laine et al., 2014), vector autoregressive modeling
(Holt and Teräsvirta, 2020), empirical mode decomposi-
tion (Wu et al., 2007), signal filter technique (Thoning et
al., 1989), the Gasser–Müller kernel smoothing (Gasser
and Müller, 1984), the Kalman filter (Harvey, 1990;
Ramos-Ibarra and Silva, 2020), and the Kolmogorov–Zur-
benko filter (Rao et al., 1997; Yang and Zurbenko, 2010). It
should be emphasized that even though the above tech-
niques are able to capture the nonlinearity in the time
series, not all the curve features can be considered to be
a change point of the trends or having interpretable infor-
mation (see Figure 9).

Detection of change point(s) is an important topic that
is only partially covered in this paper (see the review by
Reeves et al., 2007). Broadly speaking, change point anal-
ysis involves 2 considerations: (1) Do we expect one or
multiple change points? and (2) Is the location of change
point(s) known or unknown? These questions determine
the complexity of the analysis. If the timing of a change
point is expected (e.g., intervention takes effect), piece-
wise trends can be applied (see the example in Figure
9); if the number of change points and their locations are
both unknown, some learning techniques can be applied
for such identifications (Li and Lund, 2012; Fryzlewicz and
Rao, 2014; Zuo et al., 2019). However, care should be
taken when detection of trends and multiple change
points is carried out simultaneously since it is inappropri-
ate to conclude a change of long-term trends based on
a shorter time frame (e.g., near the beginning or end of
the study record). Therefore, one should not use simple
curve fitting techniques, such as polynomials, to perform
change point analysis. Instead, a formal test of appropri-
ateness and meaningfulness of change point is preferred
(Friedrich et al., 2020a).

Finally, our demonstration on the analysis of multisite
data relies on a combination of trend detection and spatial
modeling techniques, which account for irregularity of the
spatial distribution of stations and potential spatiotempo-
ral interactions. Under this framework, other spatial mod-
eling approaches can serve as an alternative (Heaton et al.,
2019). Additional approaches for deriving common trends
from an ensemble of time series include: (1) co-integration
analysis that investigates whether the average differences
between 2 or more time series remain relatively invariant
over time (Engle and Granger, 1987; Johansen, 1988; Pfaff,
2008), (2) principal component analysis that extracts as
much of the data variability as possible (Estrada and Per-
ron, 2017), and (3) rolling window regression that
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mitigates the biases resulting from time series with differ-
ent lengths or mild instances of missing observations
(Lang et al., 2019).

8. Conclusions
This paper gives an overview of current statistical knowl-
edge for atmospheric composition trend detection and
analysis. We make a distinction between the numerical
optimizations (behind the statistical methods) applied to
trend estimation and the scientifically relevant factors that
should be considered when stating a level of confidence
for trend detection, in order to demonstrate the impor-
tance of statistical thinking in the presence of data vari-
ability and various uncertainties (Tong, 2019). Techniques
alone are not the spirit of trend detection but are support-
ing tools that help us to tackle the numerical issues, such
as the influence of outliers, non-normally distributed re-
siduals, or the risk of overfitting. Beyond the basic and
indispensable components for the trend detection (e.g.,
autocorrelation and seasonality), we also show that an
appropriate model formulation with simple GLS routines
can outperform a model fitted by complex numerical opti-
mization via a GAM framework. Therefore, the technique
itself cannot be used as a replacement for the essential
covariates in the trend model (or used as justification for
taking them into account).

Note that the above statement is limited to trend
detection of a time series. If the analysis problem involves
any sort of prediction (e.g., predicting ozone at unob-
served locations or forecasting ozone levels), the applica-
tion of novel techniques, such as machine learning
techniques, remains a promising approach (Kleinert et
al., 2021; Leufen et al., 2021).

Decades ago, robust statistics based on median values
were developed for minimizing the impact of aberrant
outliers in the data (i.e., assuming the worst case scenario),
the cause of which is beyond the experience or knowledge
of the data analyst. However, today those aberrant outliers
can now be tracked and ruled out by quality control and
database management methods (Schultz et al., 2017), and
therefore, the problem of aberrant outliers is hardly an
issue any more (but the identification of possible anoma-
lies is still one of the most challenging problems for the
research community, Foorthuis, 2021). Under the circum-
stance that the aberrant outliers are removed and the data
record is sufficiently long, most techniques can describe
the central tendency properly and give similar trend esti-
mators (either mean- or median-based estimator), but this
also implies these estimations cannot be used to represent
the change of the extreme events. When data are distrib-
uted remotely from other points, but believed to be valid
observations (e.g., part of natural variability), conventional
regression models may have difficulty addressing this
extreme data variability. Alternatively, we can seek to
investigate the changes of the extreme events, with quan-
tile regression being a natural solution to provide this
estimation. In this paper, we illustrate how the analysis
of extreme quantile changes can provide additional
insight to the mean or median based estimators and can

reveal the impact of the extreme events on the central
tendency of the trend.

Based on our comparison of trend detection methods,
the classical nonparametric methods (i.e., Sen–Theil and
Siegel’s repeated medians) are not recommended for rou-
tine use because even though the aberrant outliers (and
erroneous data) are ruled out, these estimators still treat
the remaining extreme values as outliers which are omit-
ted from the trend estimation, and they are limited to the
interpretation of apparently linear changes. Instead, GLS
estimators of central tendency and quantile regression
techniques are preferable as these methods account for
as much information and data variability as possible. To
accommodate the possibility of autocorrelation, change
point, and covariates, the class of GLS models remains
a good foundation and flexibility for incorporating differ-
ent sources of uncertainty and different advanced model-
ing approaches, such as the basis function representation
of complex functional form in GAM. In addition to the
central tendency of time series represented by the GLS
estimator, quantile regression provides insight regarding
the extreme quantiles, which can have very different
trends compared to the median or mean trend, and main-
tains the flexibility for incorporating autocorrelation,
change point, and covariates into the models.

We used a collection of multiple surface ozone time
series in the southwestern United States to illustrate
a regional-scale assessment of trends, based on both the
regional mean and quantile trends. Analyzing a large data
set with hundreds or thousands of monitoring sites simul-
taneously is a common challenge in the atmospheric
sciences. The information in each station can be thought
of as a piece of a puzzle, some are informative, and some
are ambiguous, but if we can put the pieces together into
a bigger picture, the volume of information will be max-
imized, and the result will be compelling.

These recommendations are made because this set of
techniques can be learnt under the similar statistical frame-
work and can therefore be extended to address additional
complexities with less effort. However, other approaches
discussed in Section 7 might also be appropriate as long
as the relevant factors are properly accounted for.
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